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I N T R O D U C T I O N  

The more sophisticated computer programs for the analysis of the transient behavior of two-phase 
flow systems use models which require estimates of the rate of mass, energy and momentum transfer 
between phases. McFadden et al. (1981) proposed the so-called "dynamic slip" model which uses 
the momentum equations to obtain the dynamic behavior of the phase velocity difference. The 
model is derived by writing the momentum balances for vapor and liquid phases, subtracting the 
resultant equations and solving for the time derivative of the relative velocity between the phases. 
For steady-state conditions, where the relative velocity time derivative is zero, Crawford et al. 
(1985) were able to substantially simplify the dynamic slip equation. For vertical flow, only the 
liquid is in contact with the wall, and the term containing the friction between vapor and wall is 
set to zero. Further, the terms involving the spatial derivatives of the gas and liquid velocities were 
determined to be negligible. After expressing the interfacial drag in terms of the parameter CDAFo, 
where Co is the interfacial (liquid-gas) drag coefficient and AFG is the interfacial (gas-liquid) surface 
area per unit volume (length-Z), Crawford et al. (1985) showed that for vertical flow under 
steady-state conditions, CoAF~ can be related to the flow parameters by 

c A  I- 2D(I- ) D FGL(8pG)E(I__ Q = - -  , [1] 

where 

and 

D = tube diameter, 
fWL = friction factor between the liquid and the wall, 

P = pressure (force/area), 
z = axial distance (length), 

Vo, VL = mean velocities of the gas and liquid, respectively, 
VFG~" VG-- VL, 

e- void (vapor) fraction 

PG, PL, P = gas, liquid and average densities, respectively (mass/length3). 

liE, Vr~ and t~ may be computed when the void fraction, pressure drop and quality are known. 
With the foregoing quantities and values OffwL from standard correlations, [1] may be used to 
determine CDAm. Equation [1] is particularly useful for evaluation of interfacial shear when 
experimental values of E and quality are available since otherwise a relationship between E and 
quality is required. 

tPresent address: $3 Technologies, Columbia, MD 21045, U.S.A. 
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It should be noted that computationally the dynamic slip model has little value for most 
steady-state flow calculations. The expectation is that the values of CDAFG, computed as a function 
of E and G (total mass flux), from steady-state measurements will be used in the original dynamic 
slip model equations for the computation of the relative velocity between phases during various 
transient situations. For rapid transients, steady-state relationships between E and quality are 
usually in error. It is implicitly assumed that, at constant E and G, there is essentially no difference 
between the steady-state and transient values of CDAFG. 

TO aid modelers of two-phase flow transients, Ying & Weisman (1988) used experimental 
measurements of void fraction and quality with refrigerant 113 to determine values of CDAFG for 
adiabatic flow in 2.5 cm tube as a function of void fraction and mass velocity. Values were 
determined for both upflow and downflow. They also used literature data to compute CDAFG values 
for the steam-water system in adiabatic flow. Ying & Weisman (1988) presented a computational 
model for interfacial shear in adiabatic flow which compared well with the CDAFG values derived 
from the experimental data. 

In a subsequent paper, Ying & Weisman (1989)t presented experimentally derived values for 
CDAFG for diabatic flow of refrigerant 113 in a 2.5 cm tube. They found that, in the bubbly flow 
region, the values of CDAFc with heating were appreciably above those for adiabatic flow. This 
was true both for upflow and downflow. The increase in the peak values of the drag ranged from 
20 to 70%. It was also found that the peak value of CDAFc occurred at a higher void fraction than 
in adiabatic flow. 

In the present paper, we extend the model of Ying & Weisman (1988) for interfacial shear in 
adiabatic flow to diabatic conditions. The extension is limited to the bubbly flow region. 

MODEL FOR INTERFACIAL SHEAR IN ADIABATIC FLOW 

Modeling the interfacial drag in bubbly flow begins with the determination of the bubble shape 
and the size distribution. This information is then used to determine the bubble rise velocities and 
drag coefficients. The absolute velocities of the vapor and liquid phases, V G and VL, are then 
determined enabling the value of CDAFG to be computed from 

CD AvG = ~ No Co, Ai f ( VG~ - Ve)l V~i- VL[ 
(VG-- VL)[VG-- VLI ' [2] 

where 

and 

No = total number of bubbles per unit volume, 
Coi = drag coefficient for bubbles with equivalent diameter di, 
Ai = interracial area of bubble with diameter d~, 
f = number fraction of bubbles with diameter di _+ ~t, 

VL = G(1 - x)/LOL(1 -- e)], 
VG = Gx /(pG e) 
VG/= velocity of bubbles in size category i 

x = quality. 

Note that [2] simply equates the total drag on all of the bubbles to the total drag represented in 
a manner consistent with [1]. 

Based on the work of Ben-Yosef et al. (1975) on bubble size distribution, it is assumed that the 
bubbles follow the log-normal distribution which is expressed as 

( ± y  r r 2 : r-I [1°(O) ] t , f (r)  ~2nflj 

tThe caption for figure 6 of Ying & Weisman (1989) should be labeled as describing "downflow" rather than "upflow". 
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where r is the equivalent bubble radius, f~ is a scale factor and fl is a shape parameter which 
accounts for the skewness of the distribution. Ying & Weisman (1989) assumed fl was a function 
of void fraction. Further, to account for the fact that large numbers of very small bubbles are 
created at high mass fluxes, fl was also taken to be a function of the mass flux at high masss fluxes. 
The value of fl is given by 

I(0.625 - 0.52e) for G ~< Gs 
(G)~ ' [4] 

fl = ~(0.625 0.5E) for G 1> Gs 
%. 

where Gs = 4.9 x 106 kg/m 2 h (1 x 106 lb/h ft2). Since the mean of the log-normal distribution is 
given by 

rm = D exp -~- , [5] 

the value of f~ is fixed when the mean radius, rm, is determined. 
At low void fractions, the mean bubble diameter (d~ = 2rm) is computed from Hinze's (1955) 

equation 

dm = O.725(a')3/' (P ' )  -2/5 , [6] 
\PLJ \ m /  

where ~ is the surface tension and p/m = mechanical power dissipated/mass of fuid. It was found 
that Hinze's equation gives smaller average bubble sizes as the void fraction increases, which is 
contrary to the experimental observations which indicate that the size of the bubble increases as 
void fraction increases. The mean bubble diameter, din, was therefore calculated by obtaining the 
Hinze diameter at e = 0.05 and multiplying this value by the agglomerating factor. The values of 
the agglomerating factors, which were determined as those leading to the best fit of the experimental 
interfacial shear data, are given in figure 4 of Ying & Weisman (1988). Separate curves are used 
for upflow and downflow. 

Bubble size alone is not sufficient to determine bubble rise velocity. Consideration must also be 
given to the bubble shape. Bubbles were considered to belong to one of three broad shape 
categories: spherical, ellipsoidal or spherical cap. A regime map adapted from that proposed by 
Clift et al. (1978) was used for this purpose [see figure 5 of Ying & Weisman (1988)]. Bubble 
categories are therefore determined in accordance with the values of the bubble Reynolds number 
(Re) and Eotvos number (Eo). 

The interfacial area, Ai, of a spherical bubble is given as 

where Vb is the volume of a bubble and r is its radius. However, for other bubble shapes the 
approach of Mishima & Ishi (1984) was followed. The interfacial area is then calculated as 

Ai= 3( Vb'), [8] 
\rsm} 

where rsm is the Sauter mean radius. In order to calculate rsm , the shape factor for each geometry 
must be considered. For ellipsoidal bubbles, the shape factors are correlated in terms of the aspect 
ratio. In the range of interest, the time-averaged aspect ratio (the ratio of the maximum vertical 
dimension, h, to the maximum horizontal dimension, 2r) can be predicted from an equation 
proposed by Wellek et aL (1966): 

h 1 
2r 1 + 0.163Eo °'757 

and 

g Apd 2 
Eo = - -  - Eotvos number. [9] 

O" 



626 BRIEF COMMUNICATION 

The shape factor rv/rsm for the ellipsoidal shape can be calculated from an equation given by 
Mishima & Ishi (1984) after noting that rv = (3Vb/4n) 1/3. For cap bubbles, the aspect ratio (h/2rv) 
can be expressed in terms of the wake angle 0' and predicted in accordance with the suggestion 
of Mishima & Ishi (1984). 

Unhindered rise velocities for single bubbles in each of the three categories are obtained in 
accordance with Peebles & Garber (1953) for spherical bubbles, Grace et al. (1976) for ellipsoidal 
bubbles and Hetsroni (1982) for cap bubbles. These single bubble rise velocities are then corrected 
for the presence of the tube wall and other bubbles. The wall effect was accounted for using 
Harmathy's (1960) correction, while the effect of other bubbles (void fraction effect) was taken as 
that suggested by Zuber (1964). 

The drag coefficients in the spherical and ellipsoidal regimes are calculated from the equations 
of Braues (1973). However, very small bubbles are considered to exert no drag. Husain & Weisman 
(1978) found that the mean bubble size in dispersed (homogeneous) flow was ~<45% of 
the Hinze (1955) diameter evaluated from a total mass flow rate equal to 7.9 x 106kg/m2h 
(1.6 x 106 lbm/ft 2 h). Based on the above, bubbles with diameter equal to our less than this value 
were considered to be traveling along with the liquid with no drag. 

In the spherical cap regime, the drag coefficient is taken as 8/3 for upward vertical flow (Hetsroni 
1982). Since no previous study of drag coefficients for a cap bubble in downward flow was found, 
Ying & Weisman (1988) estimated the drag coefficient of a cap bubble in downward flow by using 
the fact that the drag coefficient for a half-cylinder is equal to 1.2 if the flow strikes the cap region 
of the half-cylinder directly. However, the drag coefficient for the flow striking the flat side of the 
half-cylinder is equal to 1.7. The drag coefficient for a cap bubble in downward flow is taken to 
be 8/3 x (1.2/1.7), where (1.2/1.7) is the correction factor for the flow direction. 

To obtain absolute bubble velocities, use was made of the so-called "drift flux" approach. There, 
the absolute velocity of the bubble in the flowing stream is expressed as the algebraic sum of the 
rise velocity in a stagnant liquid and a term proportional to the mean velocity of the mixture, i.e. 

where 

VG=COVm+Ub, [10] 

Vm = V~S + VLS. 

The quantities VGs and VLS are the superficial gas and liquid velocities (assuming each phase flowing 
alone), respectively. Note that, in downward flow, I'm, VGS and VLS are negative. 

The situation is complicated by the experimental observation that, in any given assemblage of 
bubbles, the observed rise velocity of the larger bubbles in upward flow can only be accounted for 
by using a larger value of Co than that used for the smaller bubbles. However, in downward flow, 
a smaller value is required to account for the differences between the behaviour of the large and 
small bubbles in an assemblage. The bubbles were therefore divided into three categories according 
to their sizes. The bubbles in categories j have an absolute velocity, VGj, given as 

VGj = Coj Vm --]- ld b . [11] 

Values for Co in upward flow have been determined by Zuber et al. (1967) and others as being in 
the range 1.1-1.6 Crawford et al. (1986) indicated that in downward flow, Co ~< 1.0. By comparison 
of observed and calculated relative velocities, the values shown in table 2 of Ying & Weisman (1988) 
were obtained. The average absolute velocity of the bubbles is calculated as 

Vc = ~ f ,  VG,. [12] 

The mean relative velocity (VG- VL) is then obtained after computing V L from 

a(1 - x )  
vL pL(1 - E) [13] 

The computation of V~ via [12] is open to question. It might be expected that an evaluation of 
V~ in which the contribution of a given category is weighted in accordance with the volume fraction 
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in the category would provide a better estimate. However, Ying (1985) found that relative velocities 
computed via [12] gave the best agreement with her observed slip ratios. 

Once the mean relative velocity of the vapor, (Vo-  VL), is calculated, nearly all the quantities 
required to obtain the product CDAFQ via [2] are available. However, neither No nor x have been 
determined. The number of bubbles per unit volume, No, may be determined by first finding the 
void fraction corresponding to an arbitrary No. The correct No is determined by multiplying the 
assumed value by the ratio of the actual to calculated void fraction. 

As assumed value of the quality is required to obtain an initial value of VL. The vapor velocity 
resulting from the model calculations is used to obtain a revised value for x. The calculation 
continues iteratively until successive values of x are in satisfactory agreement. 

Ying & Weisman (1988) compared values of CDAFG computed from the foregoing model to their 
own data for refrigerant 113 (in upflow and downflow) and literature data for steam-water systems 
at two different pressures. Good agreement between the experimentally derived and computed 
values was obtained. 

EXTENSION OF THE ADIABATIC MODEL TO DIABATIC CONDITIONS 

When boiling occurs at a heated wall, vapor bubbles are constantly being introduced at the 
heated surface. Under flow conditions, these bubbles are generally considerably smaller than the 
equilibrium size reached under adiabatic conditions. It is these small bubbles which cause the 
increase in interfacial shear and the movement of the peak interfacial shear to a higher void 
fraction. 

The mean radius of the bubbles introduced at the heated wall was based on the widely accepted 
approach of Levy (1967) who equated buoyancy, friction and surface tension forces at the point 
of bubble departure. At high velocities, Levy (1967) concluded that the buoyancy term was 
negligible. However, at the lower velocities examined by Ying & Weisman (1989), buoyancy forces 
may not be excluded. We therefore use the Levy (1967) equation as modified by Ying & Weisman 
(1986) to include the buoyancy force. They obtained for rb, the mean bubble radius: 

/ G \0.5 

rb = \Dh/ [14] 
c2Fg(PL-- PG)ZWl °''' 

1+ L 1 
where 

C~ = constant = 0.015, 
C2 = constant = 0.1, 

DH = hydraulic diameter, 
Zw = wall shear stress, 
g = gravitational acceleration 

gc = gravitational conversion factor. 

When the small bubbles leave the heated wall, the bubbles collide and interact. They eventually 
reach the equilibrium size which would be seen in adiabatic flow at the same mass flux and void 
fraction. It was assumed that the average bubble size would approach the equilibrium size 
exponentially and could be expressed as 

where 

rm = rL e -kz/D q- r E ( 1  - -  e-kz/O),  [15] 

r m = mean bubble radius at position z, 
r L = radius computed from modified Levy equation, [14] 
rE = equilibrium bubble size for adiabatic conditions as computed from [6] and the 

agglomerating factors of figure 4 of Ying & Weisman (1988), 
k = empirical constant 



628 BRIEF C O M M U N I C A T I O N  

and 

z = distance between point at which bubble is generated and point of interest. 

To compute the void fraction-shear relationship under the uniform heat addition rates of Ying 
(1985), the tube was divided into a series of axial segments. In the inlet segment, the tube contains 
only bubbles generated in that segment. These have a mean bubble size given by [14] using a z 
corresponding to half the length of the axial segment. However, the bubble sizes are distributed 
around the mean in accordance with Ben-Yosef's log-normal distribution [3]. We therefore divide 
the bubbles into a number of size categories (generally ten) and determine the fraction of bubbles 
in each category. For each size category, the individiual bubble volumes, velocities, interfacial areas 
and drag coefficients are computed following the procedures of the adiabatic model. 

For a given heat flux and heated perimeter, Qv, the volumetric flux of vapor per unit time 
generated in the given segment, can be computed as 

where 

and 

Since 

where 

and 

Ph Az [16] 
Qv = q" hLG(PG) ' 

q " =  heat flux (energy/area), 
Ph = heated perimeter (length), 
Az = length of axial segment 

hLG = heat of vaporization. 

Qv = nj ~ f(Vb). [17] 
i 

nj = total number of bubbles generated in segment j per unit time, 
f = fraction of bubbles in size category i 

(Vb)~ = average volume of a bubble in size category i, 

the total number of bubbles generated in the segment per unit time can be obtained. However, to 
obtain the void fraction and interfacial shear, the number of bubbles present in a unit volume is 
needed. For any given size category, N~, the number of bubbles per unit volume at the exit of the 
segment is 

n j f  [18] 
N, = (Ub)ia' 

where 

and 

Hence 

and 

(ub)~ = velocity of a bubble in category i 

a = flow area. 

E = y~ N,(vO,  
i 

[19] 

Co, N, aif,(V~,- VL)I v~,- VLI [20] 
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As noted in discussing [2], the above formulation simply equates the total interfacial drag calculated 
to the interfacial drag defined in terms of the average vapor and liquid velocities. 

Subsequent axial segments contain the bubbles generated in that segment as well as bubbles 
produced in all the previous segments. We proceed as we did for the first segment, but first consider 
the bubbles generated in each of the axial segments independently. The value of z is determined 
for each group, the mean radius determined, and the parameters for each size category computed 
as for the first segment. To avoid iteration, the agglomerating factor was based on the void fraction 
obtained from the experimental data for the quality and mass flow being considered. 

To compute the void fractions and interfacial drag, the combined effect of the bubbles generated 
in the segment at the given location and all those at a lower location must be considered. We 
therefore have at the exit of segment k: 

and 

aj = • ~ Na(Vb)o [21] 
) i 

E ~-~, CD~-/V~A/jJ~q(VGq-- Vi) IVGu- VLI 

CDAF G =  j i [22] 
(Vo-- VL)IVG-- VLI 

with Vo and VL being determined from x and E (see the definition following [4]). The index "~"' 
indicates bubbles in size category "i"  generated in segment "j". In computing the values for 
CDAFG, we used the previously indicated approach of assuming zero drag for bubbles having sizes 
as small or smaller than those seen in homogeneous flow. 

Ying & Weisman (1988) showed that, in downward flow, the onset of the unstable region 
corresponded to the conditions where the absolute velocity of the gas was zero. For computational 
purposes, this condition was taken as that corresponding to an absolute bubble velocity of 
< 0.5 cm/s. Bubbles with lower absolute velocities were assumed to be circulating in small eddies 
with a zero velocity relative to the liquid. Their drag cocfficient was thercforc taken as zero. 

RESULTS OF COMPUTATIONS 

A series of computations were carried out for the range of conditions examined by Ying & 
Weisman (1989). The refrigerant 113 tests they reported upon were conducted at 2 bar with mass 
velocities ranging from 1.5 x l06 to 4.9 x l06 kg/m 2 h and a heat flux of 3-6 x l04 W/cm 2. The value 
of k, the empirical constant in [14], was varied from about 0.008 to 0.8. Values of k ~< 0.01 cause 
the interfacial shear to fall below that for adiabatic flow, as only a large number of small bubbles 
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remain present and many are in the size range where zero shear is assigned. Values of k > 0.01 
increase the value of the shear, but values of k >t 0.4 produce very little additional effect. 

The best results were obtained with k = 0.035. This value was found to be satisfactory for all 
mass fluxes in both upflow and downflow. Nearly as good results were obtained with k = 0.025 
or k = 0.04. Figures 1 and 2 compare the computed results using k = 0.035 with the CDAFc values 
derived by Ying & Weisman (1988) from experimental measurements. To make the plot 
non-dimensional, CDAFG has been multiplied by D. It may be seen that good agreement is obtained. 
Both the magnitude of CDAFG and the location of the peak value are satisfactorily predicted. 

CONCLUSION 

The proposed revision of Ying & Weisman's (1988) model for interfacial shear in bubbly flow 
appears to provide a satisfactory explanation of the experimental observations of increased 
interracial shear under diabatic conditions. The observed increase in shear and shift in the peak 
shear are consistent with the change expected by the addition of small bubbles at the heated wall. 
However, the revised model is not entirely general since the value of k, the empirical constant in 
the equation used to describe the variation of bubble size with distance from the point of bubble 
generation, can be regarded as valid only for refrigerant 113 over the range of conditions examined 
by Ying & Weisman (1989). Additional data covering other fluids and pressures are needed before 
any generalizations can be made. 
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